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The Shannon Lecture

Hidden Markov Models and the
Baum-Welch Algorithm

Content of This Talk

The lectures of previous Shannon Lecturers fall into several
categories such as introducing new areas of research, resusci-
tating areas of research, surveying areas identified with the
lecturer, or reminiscing on the career of the lecturer. In this
talk I decided to restrict the subject to the Baum-Welch “algo-
rithm” and some of the ideas that led to its development.

I am sure that most of you are familiar with Markov chains
and Markov processes. They are natural models for various
communication channels in which channel conditions change
with time. In many cases it is not the state sequence of the
model which is observed but the effects of the process on a
signal. That is, the states are not observable but some func-
tions, possibly random, of the states are observed. In some
cases it is easy to assign the values of the parameters to model
a channel. All that remains is to determine what probabilities
are desired and derive the necessary algorithms to compute
them.

In other cases, the choice of parameter values is only an esti-
mate and it is desired to find the “best” values. The usual cri-
terion is maximum likelihood. That is: find the values of
parameters which maximizes the probability of the observed
data. This is the problem that the Baum-Welch computation
addresses.

Preliminaries

Let AV be the set of non-negative integers. Let’s introduce
some useful notation to replace the usual n-tuple notations:

[llk];;i = (a;, Aiy1, ..., )
lab)]i_; = (ai). aGi+1). ... . a(j)

The ‘k =" will be dropped from the subscript when it is clear
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what the ‘running variable is.

Of particular use will be the concept of conditional probabil-
ity and recursive factorization. The recursive factorization
idea says that the joint probability of a collection of events can
be expressed as a product of conditional probabilities, where
each is the probability of an event conditioned on all previous
events. For example, let A, B, and C be three events. Then

Pr(ANBNC) = Pr(A)Pr(B| A)Pr(C| AN B)

Using the bracket notation, we can display the recursive fac-
torization of the joint probability distribution of a sequence of
discrete random variables:

Pr([X(015'=[xdo) = Pr(X(0) = xo)-
N
Pr(X(m)=x, | [X(O];™" =[xy ")
n=0

Markov Chains and Hidden Markov
Chains

We will treat only Markov Chains which have finite state
spaces. The theory is more general, but to cover the more gen-
eral case will only obscure the basic ideas.

Let S be a finite set, the set of states. Let the number of ele-
ments in S be M. It will be convenient to identify the ele-
ments of S with the integers from 1 to M.

Let {S(H:te N} be a sequence of random variables with
Pr(S(t) € S) =1 for all t € M. That is, the values of S(#) are

confined to S.

Applying the above factorization to the joint distribution of
the first N 4+ 1 random variables gives:

continued on page 10
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Hidden Markov Models and the Baum-Welch Algorithm (continued from page 1)

Pr([S(0)1y'=[s]) = Pr(S(0) = s0)-
N
[ [PrSm=s, 1[St1; " =[s157)

n=1

M

For the sequence of random variables to be a Markov Chain the
conditional probabilities must only be a function of the last ran-
dom variable in the condition so that equation (1) reduces to

Pr([S(h1Y=[s]Y) = Pr(S(0) = s0)-
N

1_[ Pr(S(n)=s, |S(n — 1) = s,_1)

n=1

2

In my work, the transition probabilities were stationary, that is
they are constant functions of time:

Pr(S(m) = j|S(n—1) = i) =Pr(S(1) = j[S©0) = i) = p;

In addition to the Markov Chain, let {Y(#) : t € A} be a sequence
of random variables (called random observations). It will be con-
venient to assume that the values are confined to a discrete set
and an experiment consists of observing values of T consecutive
random variables. Again, treating a more general case will only
obscure the basic ideas.

Applying recursive factorization to the joint distribution of the
first T+ 1 random states and first T random observations:

Pr([S(h]y = [sig and [Y(DI] = [w]]) =
T

Pr(S(0) = so) - [ [Pr(S(h = s [SKIT = [sily )
t=1

T
[ ]Pr(yn
t=1

The next simplifying assumption is that the conditional probabil-
ity distribution of Y(#) given all states and all previous random
observations is only a function of S(#) (and not of time). I consid-
ered also the case when the distribution of Y(#) depends on S(t)
and S(t — 1). However, though it added little to the computation-
al complexity, it added significantly to the number of parameters
to be estimated. Making use of the above conditions,

®3)

el IS5 = [slg and [YR)IT = [yl )

Pr([S(H]g = [s:]f and [Y(H]] = [y:]]) =

T
Pr(S(0) = s0) - [ [Pr(S(h = s S(t=1) = 5-)-

t=1

T
[ [Pr(Y(h = IS =) (4)

t=1

To simplify notation, define

Fyls) & PrY(h = yISH =),
def T
5 = [St]o,
y df [y:]], and
ps.y) = PrISOL = sand [Y(O]] = y).

With this notation we have
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Pr([S(H1§ = [s:]] and [Y(D]] = [w]]) =

L 6)
ps.y) = ps [ [ Possc (el 50

t=1
This formula gives the probability of the atoms of the model, that
is, those events that can not be subdivided into smaller events.
The probability of any event describable in the model is the sum
of the probability of the atoms.

Of course, the probabilities are functions of the parameters of the
model, which we will denote by:

ot ps:1<s<M,
A= p:1<s0<M,
fyl9:1<y<Yl<s<M

and use A as a function argument where appropriate.

Questions

What questions are of interest? One question is what is the prob-
ability that an T-tuple of Y(#) will be observed. This, of course, is
a function of the parameters. The probability of an T-tuple of
observations is just the sum over all state sequences of the proba-
bilities of the corresponding atoms:

def

py: 1) S Pr(YOI =[yd[:2) =) pls. s 1) (6)

Then p(y; A) is the probability of the observations, y. It is also the
likelihood function for A given the observations, y. A standard
problem is to choose A to maximize the likelihood function.

It is frequently the case that the random observables,
{Y(#) : t€ N}, are observed for some period of time and it is
desired to find some information about the state sequence from
those observations. For example, given the event, {[Y(t)]lT =
[yt]{}, we may wish to find the probability distribution of the state
at a specified time, 7. That is we wish to find, for a given sequence
of observations, the probability distribution of s, given those
observations:

Pr(S(r) = s | [Y(H]] = [y]])

Since,

Pr(S(r) = s; and [Y(H]] = [w]])
Pr(lY()]] = [yd])

the computation of the a posteriori probability is equivalent to

computing the joint probability. Referring to equation (5), we see
that this reduces to computing

Pr(S(0) = s [ [Y(D]] = [yf) =

Te(s.) & Pr(S(r) = s, and [Y(H]T = [yT)
N

= Z Z Pso 1_[ Psiasi f(Yi | 80) 7)

[sels " [sell =1

for each choice of s;. With the exception of s;, each indexed state
is a summation variable and, with the exception of sy, occurs in
exactly two factors. It is easily deduced that the equation can be
expressed in terms of the product of matrices.

December 2003



However, there is a better (at least to me) approach to computing
this probability. We begin with the joint probability of the T-tuple
of observations and the state at time 7 and apply recursive fac-
torization where the first event is the set of observations up
through time, 7, and the state at time 7.

Pr([Y(t)]lT = [yf]f and S(7) = s,)
= Pr([Y(D]} = [y and S(v) = 5,)-
Pr([Y(H]",, = [y, [ [Y(D]} = [y} and S(7) = s,)

Now Markovity of the state sequence implies that the probablili-

ty of [S;]7,; and therefore the probability of [Y{]], ; are independ-

ent of history prior to time 7. So the condition on the Y in the sec-
ond term drop out and the factorization reduces to

Pr([Y(H]] = [y} and S(1) = 5;)
=Pr([Y(H]T =[]} and S(v) = 5;) -
Pr([Y(f)]Ll = [yl 1S() = 5c)
We next address the problem of computing these factors,
o (9) def Pr([Y(t)]{ = [y]? and S(7) = S),
def

Be(s) = Pr([Y(DIL., = [yl IS(x) =s)

and

[2(8) = a:(s) - B ()

I remark that
> er(s) =Pr(lY(D]] = [wil]) = p(y: 1.

Now recursive factoring of «.(s) where the first factor is the
observations up through time 7 —1 and the state at time 7 —1
gives

a.(s) = Pr([Y(H]] = [y]] and S(7) = s)
= ZPr([Y(t)]{_1 = [yt]{_l and S(t — 1) = cr)-

Pr(Y(r) = yr and S(r) = s[[Y(D]] ' = [y]] " and S(z — 1) = o)

Again, Markovity implies that the condition, [Y(t)]{_1 = [yt]f_l
can be dropped from the second factor:

a:(s)

S Pr(IY] ™ = [yl ' and S —1=0)-
Pr(Y(r) = yj and S(1) =s|S(r = 1) = 0)

The first factor is just o;_1(0) and the second factor is p,s - f(y<|s)
and above equation becomes the recursion:

() =Y e 1(0)posf(Ye |9) ®)

Similarly, a reverse time recursion exists for B (s):
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Be(s) =Y Puo f(Yrs110)Brs1(0) )

Finally we have

Pr(S(r) = sand [Y(D]] = [y]]) = T:(s)
= . (s)B.(9)

and

o (9) - Bz (s)
Yo ar(o)

Once we have routines for computing « and g we can compute
not only Pr(S(t) =s|y) but also the a posteriori probability of
other “local’ events, such as the event, {S(t) = sand S(t+ 1) = o}.
In this case the expression is

Pr(S(t—1) =5, S(H =0 and [Y(1)]] = »

= (8 Pso f(Yis110) Bry1(0)
= r[(ss 0')(10)

PrS(z) =sly =

Improving on Estimates of Parameters

At this point Leonard Baum and I found that we had both been
working independently on Hidden Markov Chains and had both
come up with essentially the same calculation for a posteriori
probabilities of ‘local” events. At that point we joined forces.

Now, the above calculations were based upon specified parame-
ter values. What if those parameter values did not adequately
represent the phenomena under investigation? My thoughts pro-
ceeded as follows. While the parameters may not be accurate, the
a posteriori probabilities may translate to better parameters.

For example, from the frequency interpretation of probability, if
we could observe the state sequence over a long period of time
and count the number of times the state, s, occurs, the frequency
of occurrence should be approximately Pr(S(f) =s) If the
assumed parameters are correct, we will get p;, where for a large
enough period of time p will be the stationary distribution (the
eigenvector with eigenvalue 1) of the transition matrix.

Furthermore, if the observation sequence, [yt]{, is a typical
sequence in the Information Theoretic sense, that is, it has high
probability using the parameters of the model, then the expected
frequencies of states given the observations should also be
approximately ps, where p; is the stationary distribution, not the
initial distribution. Expressed in equation form:

S Pr(S(h = s [YOI] = [y1])
T

%ps,

Similarly, from the frequency interpretation of probability, if we
could observe the state sequence over a long period of time and
count the number of times the state, s, occurs followed by o, the
frequency of occurrence should be approximately Pr(S(t—1) =s
and S(f) = o). If the assumed parameters are correct, we will get

ps . Pm .
Again if the observation sequence, [yt]lT, is a typical sequence in
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the Information Theoretic sense, then the expected frequencies of
state transitions given the observations should also be approxi-
mately p; - pss. Expressed in equation form:

Y Pr(Stt—1) = 5,8 = o|[Y(D)I] = [y]]) _
T ~ ps : pso .

Finally, if we could observe the state sequence and the observation
sequence and count the number of times S(f) = s, Y(f) = y, and the
frequency should approximate p;f(yls). Again, if the observed
sequence is a typical sequence for the given parameters, the a pos-
teriori expected frequencies should approximate p;f(yls), i.e.,

T
Pr(siy=svy® =yl Y@ =[y]
Psf(y|5) ~ 21:1 ( - 1 1)
3 ey PT(EO =51 V@I = [3:1])
T

~
~

My next thought was that if y was generated by a model with dif-
ferent parameter values and therefore not a typical sequence for
the assumed values, the a posteriori frequencies, influenced by
behavior of [y,]{, may be a better indication of the true parame-
ters that the initial guess. So I replaced the parameter values by
the expected frequencies and recomputed p(y; 1) where

S0 Pr(so=s vl = [%]7)

Ps()»/) =

def
M= pe ) =

. S Pr(sem=sv =y YO =[y])
fylsd) <« == Th0) —

T
> Prse-n=sso=civon=iw11) {9
T

I was please to find that p(y; ) > p(y; 4). In other words, this
substitution increased the likelihood function! I tried this trans-
formation on several Hidden Markov Models and the likelihood
function always increased. Leonard Baum tried it on a number of
examples and again the likelihood function always increased.

That is my contribution to the Baum-Welch “algorithm’, the easy
part. I tried to provide a mathematical proof that the likelihood
always increases but I failed.

Baum, in cooperation with J. Eagon did the hard part by proving
that this transformation either increases the likelihood function or
leaves it constant. In the latter case, 4 is a fixed point of the trans-
formation. Their proof involved rather complex computations
and applications of Holder’s inequality and the fact that the geo-
metric mean is less than or equal to the arithmetic mean.

Later Baum, together with T. Petrie, G. Soules and N. Weiss, all at
CRD/IDA at the time found a more elegant proof with the flavor
of Information Theory which I will now discuss.

The Q Function

They began with the Kullback-Leibler divergence of two distribu-
tions:

. P ()
D(pr, o) = ij pi () log (m(w))
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where p; and p, are two probability distributions on a discrete
space and o is summed over that space. The interpretation of this
number is that for an experiment consisting of multiple selections
from the distribution pi, D(p1, p») is the expected log factor of the
probability in favor of p; against p». It is an information theoretic
measure and is known to be non-negative, equaling zero only
when the p, () = p1(w) for all @ for which py(w) > 0.

How does this apply to Hidden Markov Models? We let

ps, i A) pes, y; 1)
=_—= "and =—=—.
ne p(y: 2) and () p(y; A7)
Then p; and p, are distributions and
pes, y; A) p(s. v Mp(y; A)
0<D®, ) = = ==
= D02 ; p(y: A) & <p(§, ¥ APy A))
vy S, U, A S, ;A
e p(y: A1 +ZP(_y )10 pes. yi 1) '
p(y: A) =~ Py 2) ps, yi 1)

We simplify this by defining

Q) = > pls. yi 1) log(p(s. y: M)).
Then .

Py A\ QML a) — QL)
0<Dx,A)=1 = 12
= Do) =log ( Py A)) BTy (42

and rearranging the inequality we have

QG.A) — Q. M) _ o p(y; A)
p(y: A) - p(y: A)
and this implies that if Q(x, 1) > Q(%, A) then p(1") > p(})

Hill Climbing

We obtain a “hill climbing” algorithm by finding that A" which
maximizes Q(A,A) as a function of its second argument. If
Q. )) > Q(A, 1) then p(L') > p(1) and we have succeeded in
increasing p(1) which is the probability of the observations.

To maximize Q(A, A) we begin by finding the critical points of Q
as a function of 1" and subject to the stochastic constraints on the
components of 1. (A sample constraint is Zj pij=1).

Before proceeding, let’s manipulate the expression for Q. In equa-
tion (5) the expression for p(s, y; A) is a product, so its logarithm is
a sum of log factors. Replacing A by A’ in equation(5) and taking
logarithms we have:

log(p(s, y: 1)) = log(ps) (1))
T
+ Y 1og(pu-nsn ) fy(B); 2 s(t = 1s(h))
t=1

Substituting into the definition for Q gives:
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QM2 =Y pls. y. 1) log(pso) (1)) (13)

T
+ D p(s ¥ 1) Y 10g(pae-nysin W) F(y(H; A s(E— 1s(By)).
s t=1

From this equation it can be seen that it is easy to differentiate
with respect to the components of A, add the appropriate
Lagrange factors and solve. The result has already been displayed
in equation (11).

Applications

There are too many papers published on applications to list here.
In the area of speech recognition, here is a small sample:

F. Jelinek, L. Bahl, and R. Mercer, “Design of a linguistic statistical
decoder for the recognition of continuous speech,” IEEE Trans.
Inform. Theory, vol. 21, May 1975.

L.R. Rabiner, “A tutorial on Hidden Markov models and selected
applications in speech recognition”, Proceedings of the IEEE, vol.
77, no. 2, Feb. 1989.

A. Poritz, “Linear predictive hidden Markov models and the
speech signal,” in Proceedings of ICASSP ‘82, May 1982.

EM Theory

In 1977, Dempster, Laird and Rubin collected a variety of maxi-
mum likelihood problems and methods of solving these problems
that occurred in the literature. They found that all of these meth-
ods had some ideas in common and they named it the EM
Algorithm, (standing for “Expectation, Maximization”.)

The common problem is to maximize Prob(y; ®), as a function of
® where y is observed. (The probability of i is used in the case of
discrete random variables and a density is maximized in the case
of continuous random variables.) The observation, y, is viewed as
“incomplete data” in the sense that there is a larger model con-
taining “complete data” and y inherits its distribution by way of
a mapping from the larger model to the observation model.

Mathematically: There is a probability space, X with a family of

probability measures, p(x; ®), and a mapping function, F with
F(x) = y. The distribution, g, of y is

gy ®) = Y plx®).

{x:F()=y}
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The conditional distribution of x given y is

_ px @)
gy, @)’

plx|y; @)
provided F(x) = y.

Given a second value of @, say @’ they define

Q(@, @) = E{log(p(x; @) | y; },

where £ is the notation for the expected value function. This is the
Expectation step. It gives a formula in ®’. The Maximization step
is to vary @’ to maximize Q. In many problems the maximization
step is easy and in many others it is as difficult as the original
maximum likelihood problem. This leads to a “Generalized
Estimation Maximization” which simply finds any @’ which
increases Q.

The Baum-Welch algorithm fits right into the EM scheme. x is
(s, y) and the observation is y. The Q function is exactly the Q
function that Baum et al. introduced to prove that the transforma-
tion increases the likelihood.

Recommended Reading

There are many papers published on these subjects. A few are:

L.E. Baum and ]. Eagon “An inequality with applications to sta-
tistical estimation for probabilistic functions of Markov processes
and to a model for ecology,” Bulletin of the American Mathematical
Soc., vol. 70, pp. 360-363.

L.E. Baum, T. Petrie, G. Soules and N. Weiss, “A maximization
technique occurring in the statictical analysis of probabilistic
functions of Markov chains,” Ann. Math. Stat., vol. 41, 1970.

A. Dempster, N. Laird and D. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” Journal of the Royal
Statistical Society, B, vol. 39, 1977.

A paper which extends theory to observations with continuous
distributions.

L. Liporace, “Maximum likelihood estimates for multivariate

observations Markov sources,” IEEE Trans. Inform. Theory, vol. 28,
Sept. 1982.
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